已知双曲线
,点
、
分别为双曲线
的左、右焦点,动点
在
轴上方.
(1)若点
的坐标为
是双曲线的一条渐近线上的点,求以
、
为焦点且经过点
的椭圆的方程;
(2)若∠
,求△
的外接圆的方程;
(3)若在给定直线
上任取一点
,从点
向(2)中圆引一条切线,切点为
. 问是否存在一个定点
,恒有
?请说明理由.
(1)
(2)
(3)存在
解析试题分析:(1)双曲线
的左、右焦点
、
的坐标分别为
和
,
∵双曲线的渐进线方程为:
,
∴点
的坐标为
是渐进线
上的点,即点
的坐标为
。
∵
∴椭圆的长轴长![]()
∵半焦距
,∴椭圆的方程
..5分
(2)∵
,∴
,即![]()
又圆心在线段
的垂直平分线上,故可设圆心![]()
由
。∴△
的外接圆的方程为
..9分
(3)假设存在这样的定点![]()
设点P的坐标为![]()
∵恒有
,∴![]()
即
对
恒成立。
从而
,消去
,得![]()
∵方程
的判别式![]()
∴①当
时,方程
无实数解,∴不存在这样的定点
;
②当
时,方程
有实数解,此时
,即直线
与圆相离或相切,故此时存在这样的定点
; 14分
考点:本题考查了圆锥曲线方程的求法及直线与圆的位置关系
点评:解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,直线与多种曲线的位置关系的综合问题将会逐步成为今后命题的热点,尤其是把直线和圆的位置关系同本部分知识的结合,将逐步成为今后命题的一种趋势
科目:高中数学 来源: 题型:解答题
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴正方向建立平面直角坐标系,直线的参数方程是:
(为参数).
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)设直线与曲线
交于
,
两点,点
的直角坐标为
,若
,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两定点E(-2,0),F(2,0),动点P满足
,由点P向x轴作垂线段PQ,垂足为Q,点M满足
,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线
与曲线C交于A、B两点,点N满足![]()
(O为原点),求四边形OANB面积的最大值,并求此时的直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,且它的离心率
.直线
与椭圆
交于
、
两点.![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当
时,求证:
、
两点的横坐标的平方和为定值;
(Ⅲ)若直线
与圆
相切,椭圆上一点
满足
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线与椭圆交于
,而与抛物线交于
两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过
的直线与椭圆
相交于两点
和
,
设
为椭圆
上一点,且满足
(
为坐标原点),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
.
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知坐标平面上点
与两个定点
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为8,求直线
的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
的右顶点为A,右焦点为F,右准线与
轴交于点B,且与一条渐近线交于点C,点O为坐标原点,
,
,过点F的直线
与双曲线右支交于点
.
(Ⅰ)求此双曲线的方程;
(Ⅱ)求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com