精英家教网 > 高中数学 > 题目详情

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.

(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点
为椭圆上一点,且满足为坐标原点),求实数的取值范围.

(1);⑵.

解析试题分析:(1)焦点,,

 
 即

 得 
 即

 .
考点:本题主要考查椭圆的标准方程及其几何性质,抛物线与椭圆、直线与椭圆的位置关系。
点评:中档题,本题求椭圆的标准方程,主要运用的椭圆的几何性质,注意明确焦点轴和a,b,c的关系。研究直线与圆锥曲线的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为

轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设轴的交点为,过坐标原点的直线
相交于两点,直线分别与相交于.   
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线,点分别为双曲线的左、右焦点,动点轴上方.
(1)若点的坐标为是双曲线的一条渐近线上的点,求以为焦点且经过点的椭圆的方程;
(2)若∠,求△的外接圆的方程;
(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O,直线l与椭圆C相交于PQ两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于AB两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.

查看答案和解析>>

同步练习册答案