已知函数(,)的图象恒过定点,椭圆:
()的左,右焦点分别为,,直线经过点且与⊙:相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆在轴上方的交点为,且,求内切圆的方程.
科目:高中数学 来源: 题型:解答题
已知焦距为的双曲线的焦点在x轴上,且过点P .
(Ⅰ)求该双曲线方程 ;
(Ⅱ)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以,为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以正半轴为极轴,已知曲线的极坐标方程为,曲线的参数方程是(为参数,,射线与曲线交于极点外的三点
(Ⅰ)求证:;
(Ⅱ)当时,两点在曲线上,求与的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于,两点,点的直角坐标为,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长。与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点。
(1)求、的方程;
(2)求证:。
(3)记的面积分别为,若,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点和,
设为椭圆上一点,且满足(为坐标原点),求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com