精英家教网 > 高中数学 > 题目详情

极坐标系与直角坐标系有相同的长度单位,以原点为极点,以正半轴为极轴,已知曲线的极坐标方程为,曲线的参数方程是为参数,,射线与曲线交于极点外的三点
(Ⅰ)求证:
(Ⅱ)当时,两点在曲线上,求的值.

(Ⅰ)用坐标法证明  (Ⅱ) 

解析试题分析:(1)设点的极坐标分别为
∵点在曲线上,∴
= 
, 所以 
(2)由曲线的参数方程知曲线为倾斜角为且过定点的直线,
时,BC点的极坐标分别为
化为直角坐标为
∵直线斜率为, ∴
直线BC的普通方程为, ∵过点
,解得      
考点:圆的参数方程;直线与圆的位置关系;简单曲线的极坐标方程.
点评:本题考查了极坐标方程、直角坐标方程的转化,参数方程中参数的意义,考查了方程思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2)设点是抛物线上的两点,的角平分线与轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线过点,求弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别为椭圆的上、下焦点,其中也是抛物线的焦点,点在第二象限的交点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆,过点的动直线与圆相交于不同的两点,在线段取一点,满足:)。
求证:点总在某定直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点AB,且线段AB的中点在圆上,求实数m的值。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为

轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设轴的交点为,过坐标原点的直线
相交于两点,直线分别与相交于.   
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.

查看答案和解析>>

同步练习册答案