精英家教网 > 高中数学 > 题目详情

已知分别为椭圆的上、下焦点,其中也是抛物线的焦点,点在第二象限的交点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆,过点的动直线与圆相交于不同的两点,在线段取一点,满足:)。
求证:点总在某定直线上。

(Ⅰ)(Ⅱ)设可得可得⑤×⑦得:,⑥×⑧得:,两式相加得又点A,B在圆上,且
所以,所以点Q总在定直线

解析试题分析:(1)由(0,1),设 ,因M在抛物线上,故
 ①      又,则 ②,
由①②解得                  (3分)
椭圆的两个焦点(0,1),,点M在椭圆上,有椭圆定义可得
 
,∴,椭圆的方程为:    (6分)
(2)设
可得:
 (9分)
可得:

⑤×⑦得:
⑥×⑧得:                           (10分)
两式相加得         (11分)
又点A,B在圆上,且
所以
,所以点Q总在定直线上              (12分)
考点:椭圆抛物线方程性质及直线与圆相交
点评:解题时充分利用抛物线的定义:抛物线上的点到焦点的距离等于到准线的距离,能使解题过程简化;第二问中的向量关系常转化为点的坐标关系,证明点在定直线上的主要思路是验证点的坐标始终满足于某直线方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:()经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.
(1)求椭圆的标准方程;
(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;
(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2的焦点,点A是曲线C1,C2在第二象限的交点,且

(Ⅰ)求椭圆1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:的直径,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线被曲线所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

极坐标系与直角坐标系有相同的长度单位,以原点为极点,以正半轴为极轴,已知曲线的极坐标方程为,曲线的参数方程是为参数,,射线与曲线交于极点外的三点
(Ⅰ)求证:
(Ⅱ)当时,两点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

查看答案和解析>>

同步练习册答案