如图,已知F1、F2分别为椭圆C1:
的上、下焦点,其中F1也是抛物线C2:
的焦点,点A是曲线C1,C2在第二象限的交点,且![]()
![]()
(Ⅰ)求椭圆
1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:
的直径,求
的最大值和最小值.
(Ⅰ)
;
(Ⅱ)当
时,
,当
时,
。
解析试题分析:(Ⅰ)抛物线C2的焦点F1(0,1),准线
,易得
∴
∴
(正值舍去)∴
3分
又
………①
…………② 5分
联立①②得
∴椭圆C1的方程为
6分
(Ⅱ)圆C:
∴圆心C(-2,0),半径![]()
设P(
) 7分
法一:
9分![]()
![]()
![]()
11分
当
时,
12分
当
时,
13分
法二:设M(
),则N(
) 8分![]()
![]()
11分
当
时,
12分
当
时,
13分
法三:
8分
![]()
∵C是MN中点,∴
9分
∴
10分
∴![]()
11分
当
时,
12分
当
时,
13分
考点:本题主要考查抛物线的几何性质,椭圆的标准方程,椭圆的几何性质,直线椭圆的位置关系,平面向量的坐标运算。
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用平面向量的坐标运算,将问题转化成三角函数问题,确定最值。
科目:高中数学 来源: 题型:解答题
已知抛物线
(
且
为常数),
为其焦点.![]()
(1)写出焦点
的坐标;
(2)过点
的直线与抛物线相交于
两点,且
,求直线
的斜率;
(3)若线段
是过抛物线焦点
的两条动弦,且满足
,如图所示.求四边形
面积的最小值
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,焦点在
轴上,其左、右焦点分别为
、
,短轴长为
,点
在椭圆
上,且满足
的周长为6.
(Ⅰ)求椭圆
的方程;;
(Ⅱ)设过点
的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使
恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
,![]()
(1)化
的方程为普通方程,并说明它们分别表示什么曲线?
(2)若
上的点P对应的参数为
,Q为
上的动点,求PQ的中点M到直线
的距离的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点
总在某定直线上。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列.直线
与
轴正半轴和
轴分别交于点
、
,与椭圆分别交于点
、
,各点均不重合且满足![]()
(1)求椭圆的标准方程;
(2)若
,试证明:直线
过定点并求此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面上动点P(
)及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且![]()
(I)求动点P所在曲线C的方程。
(II)设直线
与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m![]()
,m
0),点P的轨迹加上M、N两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若
,曲线C过点Q (2,0) 斜率为
的直线
与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为
,求证
为定值;
(3) 在(2)的条件下,设
,且
,求
在y轴上的截距的变化范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com