精英家教网 > 高中数学 > 题目详情

已知曲线
(1)化的方程为普通方程,并说明它们分别表示什么曲线?
(2)若上的点P对应的参数为,Q为上的动点,求PQ的中点M到直线的距离的最小值

(1)圆,椭圆  ;
(2)

解析试题分析:(1)圆     椭圆  
(2),则

考点:简单曲线的极坐标、参数方程与普通方程的互化,点到直线的距离公式,三角函数辅助角公式,三角函数的值域。
点评:中档题,注意一般的“消参”方法,涉及正弦、余弦函数,一般采用平方关系消元法。极坐标中应用:等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).

(1)若动点M满足,求点M轨迹C的方程:
(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:()经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.
(1)求椭圆的标准方程;
(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;
(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2的焦点,点A是曲线C1,C2在第二象限的交点,且

(Ⅰ)求椭圆1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:的直径,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线被曲线所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案