设椭圆
的左焦点为
,直线
与
轴交于点
,过点
且倾斜角为30°的直线
交椭圆于
两点.
(Ⅰ)求直线
和椭圆的方程;
(Ⅱ)求证:点
在以线段
为直径的圆上;
(Ⅲ)在直线
上有两个不重合的动点
,以
为直径且过点
的所有圆中,求面积最小的圆的半径长.
科目:高中数学 来源: 题型:解答题
如图,点
是椭圆
(
)的左焦点,点
,
分别是椭圆的左顶点和上顶点,椭圆的离心率为
,点
在
轴上,且
,过点
作斜率为
的直线
与由三点
,
,
确定的圆
相交于
,
两点,满足
.![]()
(1)若
的面积为
,求椭圆的方程;
(2)直线
的斜率是否为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点
在圆
上,直线
交椭圆于
、
两点.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 若OM⊥ON(
为坐标原点),求
的值;
(Ⅲ)
设点
关于
轴的对称点为
(
与
不重合),且直线![]()
与
轴交于点
,试问
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
(
且
为常数),
为其焦点.![]()
(1)写出焦点
的坐标;
(2)过点
的直线与抛物线相交于
两点,且
,求直线
的斜率;
(3)若线段
是过抛物线焦点
的两条动弦,且满足
,如图所示.求四边形
面积的最小值
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:圆
过椭圆
的两焦点,与椭圆有且仅有两个公共点:直线
与圆
相切 ,与椭圆
相交于A,B两点记
(Ⅰ)求椭圆的方程;
(Ⅱ)求
的取值范围;
(Ⅲ)求
的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:![]()
过点
,上、下焦点分别为
、
,
向量
.直线
与椭圆交于
两点,线段
中点为
.
(1)求椭圆
的方程;
(2)求直线
的方程;
(3)记椭圆在直线
下方的部分与线段
所围成的平面区域(含边界)为
,若曲线
与区域
有公共点,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(1)求抛物线的方程;
(2)设点
是抛物线上的两点,
的角平分线与
轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线
过点
,求弦
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点
总在某定直线上。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com