精英家教网 > 高中数学 > 题目详情

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

(1)
(2)
(3)

解析试题分析:解:(Ⅰ)由题意知2c="2,c=1" , 因为圆与椭圆有且只有两个公共点,从而b=1.故a=
所求椭圆方程为           3分
(Ⅱ)因为直线l:y=kx+m与圆相切
所以原点O到直线l的距离=1,即:m    5分
又由,(
设A(),B(),则     7分
,由,故
           9分
(III)
,由,得:           11分
,所以:        12分
考点:直线与椭圆的位置关系
点评:主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。

(I)试用m表示
(II)当m变化时,求p的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。
(I)写出C的直角坐标方程,并求M,N的极坐标;
(II)设MN的中点为P,求直线OP的极坐标方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,直线轴交于点,过点且倾斜角为30°的直线交椭圆于两点.
(Ⅰ)求直线和椭圆的方程;
(Ⅱ)求证:点在以线段为直径的圆上;
(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆与离心率为的椭圆)相切于点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为,求的最大值;
(ⅱ)若,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知焦距为的双曲线的焦点在x轴上,且过点P .
(Ⅰ)求该双曲线方程 ;
(Ⅱ)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

同步练习册答案