在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。
(I)写出C的直角坐标方程,并求M,N的极坐标;
(II)设MN的中点为P,求直线OP的极坐标方程。
科目:高中数学 来源: 题型:解答题
已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,。当最大时,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点及,点在以、为焦点的椭圆上,且、、 构成等差数列.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的右焦点在圆上,直线交椭圆于、两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若OM⊥ON(为坐标原点),求的值;
(Ⅲ) 设点关于轴的对称点为(与不重合),且直线与轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.
(Ⅰ)设为点的横坐标,证明;
(Ⅱ)求点T的轨迹的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆过点,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.设直线、的斜率分别为、.
(i)证明:;
(ii)问直线上是否存在点,使得直线、、、的斜率、、、满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com