如图,圆与离心率为的椭圆()相切于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线、与两曲线分别交于点、与点、(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为、,求的最大值;
(ⅱ)若,求与的方程.
(Ⅰ)。
(Ⅱ) 的方程为,的方程为
或的方程为,的方程为。
解析试题分析:(Ⅰ)由题意: 解得 2分
椭圆的方程为 3分
(Ⅱ)(ⅰ)设因为⊥,则因为
所以 5分
因为
所以当时取得最大值为,此时点 6分
(ⅱ)设的方程为,由解得
由 解得 8分
同理可得, 10分
所以,
,
由得解得 13分
所以的方程为,的方程为
或的方程为,的方程为 14分
考点:本题主要考椭圆的标准方程,椭圆的几何性质,直线椭圆的位置关系,圆的切线。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)结合向量的坐标运算,确定得到k的方程,为进一步确定直线方程奠定基础。
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点及,点在以、为焦点的椭圆上,且、、 构成等差数列.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.
(Ⅰ)设为点的横坐标,证明;
(Ⅱ)求点T的轨迹的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆与轴负半轴交于点,为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接交于点D。
(1)如果,求椭圆的离心率;
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com