精英家教网 > 高中数学 > 题目详情

如图,圆与离心率为的椭圆)相切于点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为,求的最大值;
(ⅱ)若,求的方程.

(Ⅰ)
(Ⅱ) 的方程为的方程为
的方程为的方程为

解析试题分析:(Ⅰ)由题意: 解得   2分
椭圆的方程为                            3分
(Ⅱ)(ⅰ)设因为,则因为
所以            5分
因为 
所以当取得最大值为,此时点        6分
(ⅱ)设的方程为,由解得
   解得                    8分
同理可得                  10分
所以

解得        13分
所以的方程为的方程为
的方程为的方程为             14分
考点:本题主要考椭圆的标准方程,椭圆的几何性质,直线椭圆的位置关系,圆的切线。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)结合向量的坐标运算,确定得到k的方程,为进一步确定直线方程奠定基础。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,

(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且 构成等差数列.

(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是直线被椭圆所截得的线段中点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。

查看答案和解析>>

同步练习册答案