已知椭圆![]()
(a>b>0)抛物线![]()
,从每条曲线上取两个点,将其坐标记录于下表中:
| 4 | 1 | |||
| 2 | 4 | 2 |
![]()
(2)当k=0(此时
满足①式),即直线AB平行于x轴时,
的最小值为-2.
又直线AB的斜率不存在时
,所以
的最大值为2.
(ii)
.
解析试题分析:![]()
利用待定系数法,将点(0,2),(
,
)代入椭圆方程,将(4,4),(1,2)代入抛物线方程,可得
(2)设直线AB的方程为
,设![]()
联立
,得
①
![]()
![]()
=![]()
![]()
![]()
![]()
![]()
当k=0(此时
满足①式),即直线AB平行于x轴时,
的最小值为-2.
又直线AB的斜率不存在时
,所以
的最大值为2. 11分
(ii)设原点到直线AB的距离为d,则![]()
. 13分
考点:待定系数法,平面向量的坐标运算,椭圆、抛物线的标准方程,直线与椭圆的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、抛物线的标准方程,主要运用了待定系数法。作为研究图形的面积,涉及弦长公式的应用,利用韦达定理,简化了计算过程。
科目:高中数学 来源: 题型:解答题
四边形ABCD的四个顶点都在抛物线
上,A,C关于
轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
;
(Ⅱ)若点A坐标为
,四边形ABCD的面积为4,求直线BD的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定圆
的圆心为
,动圆
过点
,且和圆
相切,动圆的圆心
的轨迹记为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)若点
为曲线
上一点,试探究直线:
与曲线
是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆C:
的离心率e为
, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,曲线y=x
-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(Ⅰ)求椭圆方程;
(Ⅱ)设直线过定点
,与椭圆交于两个不同的点
,且满足
.
求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系xOy中,过椭圆M:
右焦点的直线
交
于A,B两点,P为AB的中点,且OP的斜率为
.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆
与离心率为
的椭圆
(
)相切于点
.![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
引两条互相垂直的两直线
、
与两曲线分别交于点
、
与点
、
(均不重合).
(ⅰ)若
为椭圆上任一点,记点
到两直线的距离分别为
、
,求
的最大值;
(ⅱ)若
,求
与
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com