精英家教网 > 高中数学 > 题目详情

椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。

(1)(2)

解析试题分析:(1)由题意知:

即:得,        3分

,得               6分
(2)依题意,可知直线所在直线方程为:
由(1)可知,椭圆方程可化为:
可得            9分
由面积可得,,∴
∴椭圆的标准方程为:              12分
考点:椭圆方程性质及直线与椭圆的位置关系
点评:在求离心率时关键是找到关于的齐次方程,圆锥曲线中的向量关系式一般都转换为点的坐标运算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,圆与离心率为的椭圆)相切于点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为,求的最大值;
(ⅱ)若,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标;
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,点的直角坐标为,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

查看答案和解析>>

同步练习册答案