已知离心率为
的椭圆
上的点到左焦点
的最长距离为
.![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点
任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(I)求椭圆
的方程;
(II)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
与
轴负半轴交于点
,
为椭圆第一象限上的点,直线
交椭圆于另一点
,椭圆左焦点为
,连接
交
于点D。
(1)如果
,求椭圆的离心率;
(2)在(1)的条件下,若直线
的倾斜角为
且△ABC的面积为
,求椭圆的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标
;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若直线
过双曲线
的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点
与
轴不平行的直线与双曲线相交于不同的两点
的垂直平分线为
,求直线
在
轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线
与抛物线
相切于点
,且与
轴交于点
,
为坐标原点,定点
的坐标为
. ![]()
(1)若动点
满足
,求点
的轨迹
;
(2)若过点
的直线
(斜率不等于零)与(1)中的轨迹
交于不同的两点
(
在
之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点
,
,过
且与坐标轴不平行的直线
与椭圆交于
两点,如果
的周长等于8。
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标及定值;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com