精英家教网 > 高中数学 > 题目详情

若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线轴上截距的取值范围.

(Ⅰ).(Ⅱ)直线轴上的截距的取值范围为

解析试题分析:(Ⅰ)由,且,解得故双曲线的方程为.
(Ⅱ)由(Ⅰ)知,依题意可设过点的直线为,且的中点,则故直线的方程为,即所以直线轴上的截距,由,且,所以.即直线轴上的截距的取值范围为
考点:本题主要考查双曲线的标准方程及几何性质,直线与双曲线的位置关系。
点评:中档题,结合双曲线的几何性质,应用“待定系数法”求得了双曲线标准方程。研究直线与圆锥曲线的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。(II)中根据方程组有解,确定得到直线斜率范围,易于忽视。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,点的直角坐标为,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且它的离心率.直线
与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:两点的横坐标的平方和为定值;
(Ⅲ)若直线与圆相切,椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案