已知椭圆的左右焦点分别为、,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.
科目:高中数学 来源: 题型:解答题
设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).
(I)求椭圆的方程;
(II)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点与轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线在轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线与抛物线相切于点,且与轴交于点,为坐标原点,定点的坐标为.
(1)若动点满足,求点的轨迹;
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点(在之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为,是椭圆的右焦点,试探究以为
直径的圆与以椭圆长轴为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点,,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com