已知椭圆
的左右焦点分别为
、
,离心率
,直线
经过左焦点
.
(1)求椭圆
的方程;
(2)若
为椭圆
上的点,求
的范围.
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(I)求椭圆
的方程;
(II)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若直线
过双曲线
的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点
与
轴不平行的直线与双曲线相交于不同的两点
的垂直平分线为
,求直线
在
轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线
与抛物线
相切于点
,且与
轴交于点
,
为坐标原点,定点
的坐标为
. ![]()
(1)若动点
满足
,求点
的轨迹
;
(2)若过点
的直线
(斜率不等于零)与(1)中的轨迹
交于不同的两点
(
在
之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线
与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若
是椭圆
:
且
为常数
上关于原点对称的两点,点
是椭圆上的任意一点,若直线
和
的斜率都存在,并分别记为
,
,那么
与
之积是与点
位置无关的定值
.
试对双曲线
且
为常数
写出类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点
,
,过
且与坐标轴不平行的直线
与椭圆交于
两点,如果
的周长等于8。
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标及定值;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com