精英家教网 > 高中数学 > 题目详情

设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(I)求椭圆的方程;
(II)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

(I)椭圆的方程为
(II)当时,,故

解析试题分析:(I)由题设知,, 由
.解得.所以椭圆的方程为
(II)方法1:设点,因为的中点坐标为
所以所以


因为点在圆上,所以,即
因为点在椭圆上,所以,即

因为,所以当时,
法2:由题知圆N: 的圆心为N;则

从而求的最大值转化为求的最大值;
因为点在椭圆上,设点所以,即
又因为,所以
因为,所以当时,,故
方法3:①若直线的斜率存在,设的方程为
,解得.因为是椭圆上的任一点,设点
所以,即.所以

因为,所以当时,,故
②若直线EF的斜率不存在,此时EF的方程为; 由,解得
不妨设E(0,3),F(0,1); 因为点在椭圆上,设点所以,即
所以,故
因为,所以当时,,故
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,平面向量的坐标运算。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)注意讨论直线的斜率存在、不存在两种情况,易于忽视。熟练进行平面向量的坐标运算,是正确解题的关键。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足. 当时,试证明直线过定点.过定点(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标;
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

查看答案和解析>>

同步练习册答案