已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最小值?并求出最小值.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以坐标原点为几点,轴的正半轴为极轴建立极坐标系.已知直线上两点的极坐标分别为,圆的参数方程(为参数).
(Ⅰ)设为线段的中点,求直线的平面直角坐标方程;
(Ⅱ)判断直线与圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).
(I)求椭圆的方程;
(II)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.
(Ⅰ)求点T的横坐标;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com