精英家教网 > 高中数学 > 题目详情

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.

(1)(2)

解析试题分析:解:(Ⅰ)椭圆C的方程为
(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),AB的面积为3,不符合题意.
②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:
,显然>0成立,设A,B,则
,可得|AB|=
又圆的半径r=,∴AB的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为
考点:直线与椭圆的位置关系的运用
点评:主要是考查了直线与椭圆的位置关系的运用,通过联立方程组,结合韦达定理来求解三角形的面积,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为几点,轴的正半轴为极轴建立极坐标系.已知直线上两点的极坐标分别为,圆的参数方程(为参数).
(Ⅰ)设为线段的中点,求直线的平面直角坐标方程;
(Ⅱ)判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过抛物线>0)的顶点作两条互相垂直的弦OA、OB。

⑴设OA的斜率为k,试用k表示点A、B的坐标;
⑵求弦AB中点M的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.
(Ⅰ)求点T的横坐标
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点,且与轴交于点为坐标原点,定点的坐标为.

(1)若动点满足,求点的轨迹
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为 (为参数) 上的动点,点满足点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

同步练习册答案