精英家教网 > 高中数学 > 题目详情

如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。

(I)试用m表示
(II)当m变化时,求p的取值范围。

(Ⅰ)x1x2·
(Ⅱ)p的取值范围是

解析试题分析:(Ⅰ)依题意,A、B、C、D四点坐标是下面方程组的解:

消去x,得y2-y+1-m=0,                     2分
由Δ=1-4(1-m)>0,得m>
且y1+y2=1,y1y2=1-m.
x1x2·.    6分
(Ⅱ)由向量=(x1,y1-p)与=(-x2,y2-p)共线,
得x1(y2-p)+x2(y1-p)=0,
∴p=            9分

∵m>,∴0<p<
故p的取值范围是.                     12分
考点:双曲线、抛物线的位置关系,平面向量的坐标运算。
点评:中档题,涉及曲线的位置关系问题,往往通过联立方程组,消元后,应用韦达定理,简化运算过程。本题(II)通过应用平面向量共线的条件,建立了p,m的关系,利用函数的观点,确定得到p的范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知A、B、C是椭圆W:上的三个点,O是坐标原点.
(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:设分别为曲线上的点,把两点距离的最小值称为曲线的距离.
(1)求曲线到直线的距离;
(2)已知曲线到直线的距离为,求实数的值;
(3)求圆到曲线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为。当最大时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且 构成等差数列.

(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若OM⊥ON(为坐标原点),求的值;
(Ⅲ) 设点关于轴的对称点为不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆
(Ⅰ)设椭圆的半焦距,且成等差数列,求椭圆的方程;
(Ⅱ)设(1)中的椭圆与直线相交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案