精英家教网 > 高中数学 > 题目详情

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;
(2)求证:
(3)记的面积分别为,若,求的取值范围。

(1) (2)用向量来证明 (3)

解析试题分析:(1)                                       
,得                   
(2)设直线  
=0
                                                      
(3)设直线
,同理可得 
                             

同理可得
               
 
考点:圆锥曲线的综合.
点评:本题是对椭圆与抛物线以及直线与抛物线和直线与椭圆的综合问题的考查.是一道整理过程很麻烦的题,需要要认真,细致的态度才能把题目作好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆
(Ⅰ)设椭圆的半焦距,且成等差数列,求椭圆的方程;
(Ⅱ)设(1)中的椭圆与直线相交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点AB,且线段AB的中点在圆上,求实数m的值。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

查看答案和解析>>

同步练习册答案