精英家教网 > 高中数学 > 题目详情

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

(1)化成直角坐标即可证明(2)

解析试题分析:(1)因为曲线的极坐标方程为,所以它的直角坐标方程为,为以(2,0)为圆心,以2为半径的圆,因为射线与曲线交于极点以外的三点A,B,C.所以
(2)曲线也是一个圆,将点B,C坐标带入圆的方程,可以解得.
考点:本小题主要考查简单曲线极坐标方程和参数方程.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;
(2)求证:
(3)记的面积分别为,若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得|=3|.
(1)求椭圆的标准方程;         
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.

(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点
为椭圆上一点,且满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,是椭圆上一点,若
(1)求椭圆方程;
(2)若的面积。

查看答案和解析>>

同步练习册答案