在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
如图,已知椭圆过点,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.设直线、的斜率分别为、.
(i)证明:;
(ii)问直线上是否存在点,使得直线、、、的斜率、、、满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(,)的图象恒过定点,椭圆:
()的左,右焦点分别为,,直线经过点且与⊙:相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆在轴上方的交点为,且,求内切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为,是椭圆的右焦点,试探究以为
直径的圆与以椭圆长轴为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的左右焦点分别为、,由4个点、、和组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线,,与曲线交于极点以外的三点A,B,C.
(1)求证:;
(2)当时,B,C两点在曲线上,求与的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com