精英家教网 > 高中数学 > 题目详情

已知为椭圆的左、右焦点,是椭圆上一点,若
(1)求椭圆方程;
(2)若的面积。

(1);(2)

解析试题分析:(1)
(2)由已知得
解得,所以的面积为。考点:本题主要考查椭圆的定义、标准方程,三角形面积公式,余弦定理的应用。
点评:典型题,涉及椭圆的焦点弦问题,往往要利用椭圆的定义,本题利用椭圆的定义及余弦定理,建立方程组,利用整体代换思想求得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是F抛物线与椭圆的公共焦点,且椭圆的离心率为

(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线,切点P在第一象限,如图,设切线与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为(其中为坐标原点),若,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.
(1)求椭圆的方程;(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若
,.

(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O,直线l与椭圆C相交于PQ两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于AB两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点为椭圆的右顶点, 点,点在椭圆上, .


(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;

查看答案和解析>>

同步练习册答案