精英家教网 > 高中数学 > 题目详情

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.
(1)求椭圆的方程;(2)求直线的方程.

(1)(2)

解析试题分析:(1)∵到直线的距离为,∴.
,所求椭圆的方程为.             5分
(2)设,∵,∴
由∵在椭圆上,∴(取正值)
的斜率为。∴的方程为,即
考点:椭圆方程几何性质及直线和椭圆相交的位置关系
点评:第二问中的向量关系式常用坐标表示,转化为坐标运算,所以本题还可首先设出直线方程,与椭圆联立找到根与系数的关系,再结合向量的坐标表示求得交点,从而确定直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,,过点F的直线与双曲线右支交于点
(Ⅰ)求此双曲线的方程;
(Ⅱ)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,是椭圆上一点,若
(1)求椭圆方程;
(2)若的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点P是曲线C:上的动点,点P到点(0,1)的距离和它到
焦点F的距离之和的最小值为
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,
过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C
相切?若存在,求出k的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率为2,焦点与椭圆的焦点相同,求双曲线的方程及焦点坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知椭圆的一个顶点为B,离心率
直线l交椭圆于MN两点.
(Ⅰ)求椭圆的标准方程;
(II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.

查看答案和解析>>

同步练习册答案