已知坐标平面上点
与两个定点
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为8,求直线
的方程
(1)点M的轨迹方程是(x-1)2+(y-1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆
(2)直线l的方程为x=-2,或5x-12y+46=0.
解析试题分析:解:(1)由题意,得
=5.
,化简,得x2+y2-2x-2y-23=0.即(x-1)2+(y-1)2=25.∴点M的轨迹方程是(x-1)2+(y-1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,l:x=-2,此时所截得的线段的长为
,∴l:x=-2符合题意.当直线l的斜率存在时,设l的方程为y-3=k(x+2),即kx-y+2k+3=0,圆心到l的距离
,由题意,得
,解得
.∴直线l的方程为
.即5x-12y+46=0.综上,直线l的方程为x=-2,或5x-12y+46=0.
考点:圆的方程
点评:解决的关键是根据直接法来得到点满足的几何关系,然后坐标化得到求解,并能结合直线与圆的位置关系来得到,属于基础题。
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线
与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F
、F
,A是椭圆C上的一点,AF
⊥F
F
,O是坐标原点,OB垂直AF
于B,且OF
=3OB.![]()
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x
+y
=t
上任意点M(x
,y
)处的切线交椭圆C于Q
、Q
两点,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
,点
、
分别为双曲线
的左、右焦点,动点
在
轴上方.
(1)若点
的坐标为
是双曲线的一条渐近线上的点,求以
、
为焦点且经过点
的椭圆的方程;
(2)若∠
,求△
的外接圆的方程;
(3)若在给定直线
上任取一点
,从点
向(2)中圆引一条切线,切点为
. 问是否存在一个定点
,恒有
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为
左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,
,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com