已知椭圆
的中心在坐标原点,两个焦点分别为
,![]()
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
,且
与
交于点
.
(1) 求椭圆
的方程;
(2) 是否存在满足
的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由.
(1)
. (2)满足条件的点
有两个.
解析(1)试题分析:解法1:设椭圆
的方程为![]()
,依题意:
解得:
∴ 椭圆
的方程为
.
解法2:设椭圆
的方程为![]()
,根据椭圆的定义得
,即
, ∵
, ∴
. ∴ 椭圆
的方程为
.
(2) 解法1:显然直线
的斜率存在,设直线
的方程为
,
由
消去
,得
.
设
,则
.
由
,即
得![]()
.
∴抛物线
在点
处的切线
的方程为
,即
.
∵
, ∴
.
同理,得抛物线
在点
处的切线
的方程为
.
由
解得
∴
. ∵
,
∴点
在椭圆
上. ∴
.
化简得
.(*) 由
,
可得方程(*)有两个不等的实数根. ∴满足条件的点
有两个.
解法2:设点
,
,
,由
,即
得![]()
.
∴抛物线
在点
处的切线
的方程为
,
即
.∵
, ∴
.
∵点
在切线
上, ∴
. ①
同理,
. ② 综合①、②得,点
的坐标都满足方程
.∵经过![]()
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
。![]()
(1)求
、
的方程;
(2)求证:
。
(3)记
的面积分别为
,若
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得|
=3|![]()
.
(1)求椭圆的标准方程;
(2)求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线与椭圆交于
,而与抛物线交于
两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过
的直线与椭圆
相交于两点
和
,
设
为椭圆
上一点,且满足
(
为坐标原点),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
(α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知坐标平面上点
与两个定点
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为8,求直线
的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且
(O为坐标原点),并求出该圆的方程;
(3)已知
,设直线
与圆C:
(1<R<2)相切于A1,且
与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com