在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 (α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(1)点P在直线 l上.(2)最小值为.
解析试题分析:(1)把极坐标系的点P(4,)化为直角坐标,得P(0,4),
因为点P的直角坐标(0,4)满足直线l的方程x-y+4=0,所以点P在直线 l上.
(2)因为点Q在曲线C上,故可设点Q的坐标为(cosα,sinα),
从而点Q到直线l的距离
=cos(α+)+2,
由此得,当cos(α+)=-1时,d取得最小值,且最小值为.
考点:本题主要考查极坐标与直角坐标方程的互化,点到直线的距离公式,三角函数辅助角公式,三角函数的性质。
点评:中档题,(1)利用数形结合法,极值于直角三角形边角关系,确定得到极坐标方程。(2)的解答,很好体现了参数方程的应用,将问题转化成三角函数最值的研究。
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率为,右准线方程为。
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,
轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设与轴的交点为,过坐标原点的直线
与相交于两点,直线分别与相交于.
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆的右焦点,点、分别是轴、
轴上的动点,且满足.若点满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交
于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是F抛物线与椭圆的公共焦点,且椭圆的离心率为
(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线,切点P在第一象限,如图,设切线与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为(其中为坐标原点),若,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com