精英家教网 > 高中数学 > 题目详情

已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)设N(x,y),M(),则由已知得,,                     2分
代入得,.                                                        4分
所以曲线E的方程为.                                                           5分
(Ⅱ)方法一:
因为线段的长等于椭圆短轴的长,要使三点能构成三角形,
则弦不能与轴垂直,故可设直线的方程为
,消去,并整理,得
.                                                          7分
,又,
所以,                                                9分
因为,
所以,即
所以,即
因为,所以.                                                        12分
又点到直线的距离
因为
所以                                             14分
所以,即的最大值为.                                                   15分
(Ⅱ)方法二:
因为线段的长等于椭圆短轴的长,要使三点能构成三角形,
则弦不能与垂直,故可设直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 (α为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线  在点  处的切线  平行直线,且点在第三象限.
(1)求的坐标;
(2)若直线  , 且  也过切点 ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点.
(1)求该椭圆的标准方程;
(2)设点,若是椭圆上的动点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由抛物线与它在点和点的切线所围成的区域的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点

(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线A   C、BD过原点O,若,
(i) 求的最值.
(ii) 求证:四边形ABCD的面积为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆C:(.

(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求满足的条件.

查看答案和解析>>

同步练习册答案