已知双曲线
的离心率为2,焦点与椭圆
的焦点相同,求双曲线的方程及焦点坐标。
科目:高中数学 来源: 题型:解答题
已知双曲线
,点
、
分别为双曲线
的左、右焦点,动点
在
轴上方.
(1)若点
的坐标为
是双曲线的一条渐近线上的点,求以
、
为焦点且经过点
的椭圆的方程;
(2)若∠
,求△
的外接圆的方程;
(3)若在给定直线
上任取一点
,从点
向(2)中圆引一条切线,切点为
. 问是否存在一个定点
,恒有
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C:
过点
, 且离心率
.![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点
的动直线交椭圆于点
,设椭圆的左顶点为
连接
且交动直线
于
,若以MN为直径的圆恒过右焦点F,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:
,直线l:
与椭圆C:
相交于P、Q两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且
,求直线l的方程;
(Ⅱ)如图,若
重心恰好在圆上,求m的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,如图,已知椭圆C:
的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、PB与直线l:y=-2分别交于点M、N.![]()
(1)设直线AP、PB的斜率分别为k1,k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线
的距离为
,离心率![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线
:
,是否存在实数m,使直线
与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆
的两焦点在
轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com