(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线
的距离为
,离心率![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线
:
,是否存在实数m,使直线
与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
科目:高中数学 来源: 题型:解答题
已知双曲线
的右顶点为A,右焦点为F,右准线与
轴交于点B,且与一条渐近线交于点C,点O为坐标原点,
,
,过点F的直线
与双曲线右支交于点
.
(Ⅰ)求此双曲线的方程;
(Ⅱ)求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)已知椭圆
:
(
)过点
,其左、右焦点分别为
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0)的两个焦点和短轴的两个端点都在圆
上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)
已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点
(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分12分)已知椭圆![]()
的一个顶点为B
,离心率![]()
,
直线l交椭圆于M、N两点.
(Ⅰ)求椭圆的标准方程;
(II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)在直角坐标平面内,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,直线
的参数方程是
(
为参数)。
求极点在直线
上的射影点
的极坐标;
若
、
分别为曲线
、直线
上的动点,求
的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知函数
(其中
且
为常数)的图像经过点A
、B
.
是函数
图像上的点,
是
正半轴上的点.
(1) 求
的解析式;
(2) 设
为坐标原点,
是一系列正三角形,记它们的边长是
,求数列
的通项公式;
(3) 在(2)的条件下,数列
满足
,记
的前
项和为
,证明:
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com