在平面直角坐标系xOy中,如图,已知椭圆C:
的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、PB与直线l:y=-2分别交于点M、N.![]()
(1)设直线AP、PB的斜率分别为k1,k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
(1)k1·k2=
.
=
=-
(2)MN长的最小值是4
.
(3)
为直径的圆恒过定点
(或点
)
解析试题分析:解:(1)由题设
可知,点A(0,1),B(0,-1).
令P(x0,y0),则由题设可知x0≠0.
所以,直线AP的斜率k1=
,PB的斜率为k2=
. 2分
又点P在椭圆上,所以
(x0≠0),从而有
k1·k2=
.
=
=-
. 4分
(2)由题设可以得到直线AP的方程为y-1=k1(x-0),直线PB的方程为
y-(-1)=k2(x-0).
由
,解得
;
由
,解得
.
所以,直线AP与直线l的交点
,直线PB与直线l的交点
.
7分
于是
,又k1·k2=-
,所以
≥2
=4
,
等号成立的条件是
,解得
.
故线段MN长的最小值是4
. 10分
(3)设点Q(x,y)是以MN为直径的圆上的任意一点,则
=0,故有
.
又
,所以以MN为直径的圆的方程为
. 13分
令
,解得
或
.
所以,以
为直径的圆恒过定点
(或点
).16分
注:写出一点的坐标即可得分.
考点:直线与椭圆的位置关系
点评:研究直线与圆的位置关系,以及直线与椭圆的位置关系,并结合向量的知识来处理,圆过定点的问题,利用数量积为零,属于基础题。
科目:高中数学 来源: 题型:解答题
已知椭圆C:
.
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设点P是曲线C:
上的动点,点P到点(0,1)的距离和它到
焦点F的距离之和的最小值为![]()
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为
的直线交C与另一点Q,交x轴于点M,
过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C
相切?若存在,求出k的值,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线实轴在
轴,且实轴长为2,离心率
, L是过定点
的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于
,
两点,且线段
恰好以点
为中点,若存在,求出直线L的方程,若不存,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线
,
为焦点,
为准线,准线与
轴交点为![]()
(1)求
;
(2)过点
的直线与抛物线
交于
两点,直线
与抛物线交于点
.
①设
三点的横坐标分别为
,计算:
及
的值;
②若直线
与抛物线交于点
,求证:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)已知椭圆
:
(
)过点
,其左、右焦点分别为
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)
已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点
(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
中,点
,点
为抛物线
的焦点,
线段
恰被抛物线
平分.
(Ⅰ)求
的值;
(Ⅱ)过点
作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com