精英家教网 > 高中数学 > 题目详情

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

(1)(2)k

解析试题分析:(1)椭圆C: 
(2)显然直线x=0不满足条件,可设直线l:y="kx+2" ,A(),B()

(1)



=+(>0
所以-2<k<2……… (2)由 (1)(2)得k
考点:椭圆的方程
点评:主要是考查了直线于椭圆的位置关系的运用,通过联立方程组来得到求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点,且与轴交于点为坐标原点,定点的坐标为.

(1)若动点满足,求点的轨迹
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为 (为参数) 上的动点,点满足点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线,点分别为双曲线的左、右焦点,动点轴上方.
(1)若点的坐标为是双曲线的一条渐近线上的点,求以为焦点且经过点的椭圆的方程;
(2)若∠,求△的外接圆的方程;
(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边ABAC的斜率的乘积是-,求顶点A的轨迹方程.?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别为椭圆的左、右两个焦点.
(Ⅰ) 若椭圆C上的点两点的距离之和等于4, 写出椭圆C的方程和离心率.;
(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为时, 求证: ·为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,如图,已知椭圆C的上、下顶点分别为AB,点P在椭圆C上且异于点AB,直线APPB与直线ly=-2分别交于点MN.

(1)设直线APPB的斜率分别为k1k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

同步练习册答案