精英家教网 > 高中数学 > 题目详情

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

(1) ;(2)综上所述,≠0.

解析试题分析:(1)由题意,直线的方程是,∵,∴的方程是
若直线轴重合,则,若直线不与重合,可求得直线的方程是,与的方程联立消去,因不经过,故动点动的轨迹的方程是 6分
(2)设(x1,y1),直线l的方程为y=k(x+2)于是两点的坐标满足方程组 由方程消去y并整理得(1+4k2)x2+16k2x+16k2-4=0由-2x1得x1,从而y1设线段的中点为N,则N() 8分
以下分两种情况:①当k=0时,点的坐标为(2,0),线段的垂直平分线为y轴,
于是,由≤4得:.
②当k≠0时,线段的垂直平分线方程为 y-=-(x+)令x=0,
得m=,∴
=-2x1-m(y1-m)=()=≤4
解得∴m=  11分
∴当
时,≥4

综上所述,≠0.…13分
考点:本题主要考查椭圆的方程,直线与椭圆的位置关系,平面向量的坐标运算,均值定理的应用。
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(1)求椭圆方程时,应用了参数法,并对可能的情况进行了讨论。(2)则在应用韦达定理的基础上,将m用k表示,并利用均值定理,逐步求得m的范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C的两个焦点为F1F2,点B1为其短轴的一个端点,满足

(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1l2l1与椭圆交于点ABl2与椭圆交于点CD,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.

(1)若,求点A的坐标;
(2)若直线的倾斜角为,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线为焦点,为准线,准线与轴交点为
(1)求
(2)过点的直线与抛物线交于两点,直线与抛物线交于点.
①设三点的横坐标分别为,计算:的值;
②若直线与抛物线交于点,求证:三点共线.

查看答案和解析>>

同步练习册答案