精英家教网 > 高中数学 > 题目详情

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

(1)  (2) PQ的方程为

解析试题分析:解:(1)由题可知点,且可设A(,0),M(),B(0,),
则可得
,即,∴,这就是点M的轨迹方程。
(2)由(1)知为(,0),为(,0),
由题设PQ为,由 有,设
恒成立,
==
=== 
),则=,当且仅当,即时取“=”∴的最大值为6,此时PQ的方程为
考点:轨迹方程的求解,以及直线椭圆的位置关系
点评:解决的关键是利用向量的关系式来求解坐标关系,得到轨迹方程,同时能结合韦达定理来得到根与系数的关系来求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆()过点,其左、右焦点分别为,且.
(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆()过点,其左、右焦点分别为,且.
(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为
(Ⅰ)写出的方程;
(Ⅱ)设直线交于两点.k为何值时?此时的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,求△面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线过定点,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)直线交于两点,以为切点分别作的切线,两切线交于点.
①求证:;②若直线交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.

(1)求椭圆的方程;
(2)如图7,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

同步练习册答案