已知
,点B是
轴上的动点,过B作AB的垂线
交
轴于点Q,若
,
.![]()
(1)求点P的轨迹方程;
(2)是否存在定直线
,以PM为直径的圆与直线
的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
(1)y2=x
(2)存在定直线x=
,以PM为直径的圆与直线x=
的相交弦长为定值![]()
解析试题分析:解: (1)设B(0,t),设Q(m,0),t2=
|m|,
m
0,m=-4t2,
Q(-4t2,0),设P(x,y),则
=(x-
,y),
=(-4t2-
,0),
2
=(-
,2 t), ![]()
+
=2
。
(x-
,y)+ (-4t2-
,0)= (-
,2 t),
x=4t2,y="2" t,
y2=x,此即点P的轨迹方程; 6分。
(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),
M (4,0) ,则以PM为直径的圆的 圆心即PM的中点T(
,
), 以PM为直径的圆与直线x=a的相交弦长:
L=2![]()
=2
=2
10分
若a为常数,则对于任意实数y,L为定值的条件是a-
="0," 即a=
时,L=![]()
存在定直线x=
,以PM为直径的圆与直线x=
的相交弦长为定值
。 3分
考点:抛物线定义,以及直线与圆
点评:解决的关键是能利用向量的关系式化简得到坐标关系,同时能利用直线与圆的位置关系来求解定值,属于基础题。
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得|
=3|![]()
.
(1)求椭圆的标准方程;
(2)求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且
(O为坐标原点),并求出该圆的方程;
(3)已知
,设直线
与圆C:
(1<R<2)相切于A1,且
与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,椭圆C1:
="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若
·
=0,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,且过点
.
(1)求该椭圆的标准方程;
(2)设点
,若
是椭圆上的动点,求线段
的中点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
.
(1)求椭圆G的方程;
(2)求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com