精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
(1)求椭圆G的方程;
(2)求的面积.

(1)(2)

解析试题分析:(1)由已知得
解得,又
所以椭圆G的方程为
(2)设直线l的方程为
设A、B的坐标分别为AB中点为E

因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率解得m=2。
此时方程①为解得所以
所以|AB|=.此时,点P(—3,2)到直线AB:的距离
所以△PAB的面积S=
考点:本小题主要考查椭圆标准方程的求解和椭圆性质的应用.
点评:求解直线与圆锥曲线的位置关系问题,通常会直线方程与椭圆方程联立方程组,此时不要忘记验证判别式,而且运算量比较大,要仔细计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若
,.

(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足.
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点为椭圆的右顶点, 点,点在椭圆上, .


(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知抛物线经过椭圆的两个焦点.设,又不在轴上的两个交点,若的重心(中线的交点)在抛物线上,

(1)求的方程.
(2)有哪几条直线与都相切?(求出公切线方程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

同步练习册答案