(Ⅰ)
(Ⅱ) [
,
).
解析试题分析:(Ⅰ) 设F2(c,0),则![]()
=
,
所以
c=1.
因为离心率e=
,所以
a=
.
所以椭圆C的方程为
.
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-
,此时P(
,0)、Q(
,0)
.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-
,m) (m≠0),A(x1,y1),B(x2,y2).
由
得
(x1+x2)+2(y1+y2)
=0,
则-1+4mk=0,
故k=
.
此时,直线PQ斜率为
,PQ的直线方程为
.
即
.
联立
消去y,整理得
.所以
,
.
于是
(x1-1)(x2-1)+y1y2
![]()
![]()
![]()
.
令t=1+32m2,1<t<29,则
.
又1<t<29,所以
.
综上,
的取值范围为[
,
).
考点:直线与椭圆的位置关系 椭圆的几何性质
点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
.
(1)求椭圆G的方程;
(2)求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的离心率
,过点
和
的直线与原点的距离为
。⑴求椭圆的方程;⑵已知定点
,若直线
与椭圆交于
两点,问:是否存在
的值,使以
为直径的圆过
点?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,点
,直线
、
都是圆
的切线(
点不在
轴上)。
⑴求过点
且焦点在
轴上抛物线的标准方程;
⑵过点
作直线
与⑴中的抛物线相交于
、
两点,问是否存在定点
,使
.
为常数?若存在,求出点
的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知m>1,直线
,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点
时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A![]()
、△B![]()
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图椭圆
:![]()
的两个焦点为
、
和顶点
、
构成面积为32的正方形.![]()
(1)求此时椭圆
的方程;
(2)设斜率为
的直线
与椭圆
相交于不同的两点
、
、
为
的中点,且
. 问:
、
两点能否关于直线
对称. 若能,求出
的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知直线L:y=x+1与曲线C:
交于不同的两点A,B;O为坐标原点。
(1)若
,试探究在曲线C上仅存在几个点到直线L的距离恰为
?并说明理由;
(2)若
,且a>b,
,试求曲线C的离心率e的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
所围成的封闭图形的面积为
,曲线
的内切圆半径为
.记
为以曲线
与坐标轴的交点为顶点的椭圆.
(1)求椭圆
的标准方程;
(2)设
是过椭圆
中心的任意弦,
是线段
的垂直平分线.
是
上异于椭圆中心的点.
(i)若
(
为坐标原点),当点
在椭圆
上运动时,求点
的轨迹方程;
(ii)若
是
与椭圆
的交点,求
的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com