已知曲线
所围成的封闭图形的面积为
,曲线
的内切圆半径为
.记
为以曲线
与坐标轴的交点为顶点的椭圆.
(1)求椭圆
的标准方程;
(2)设
是过椭圆
中心的任意弦,
是线段
的垂直平分线.
是
上异于椭圆中心的点.
(i)若
(
为坐标原点),当点
在椭圆
上运动时,求点
的轨迹方程;
(ii)若
是
与椭圆
的交点,求
的面积的最小值.
(1)
;(2) (i)
,(ii)![]()
解析试题分析:(1)由题意得
又
,解得
,
.因此所求椭圆的标准方程为
. ……4分
(2)(i)假设
所在的直线斜率存在且不为零,设
所在直线方程为
,
.解方程组
得
,
,
所以
. ……6分
设
,由题意知
,所以
,即
,因为
是
的垂直平分线,所以直线
的方程为
,即
,因此
, ……8分
又
,所以
,故
.
又当
或不存在时,上式仍然成立.
综上所述,
的轨迹方程为
. ……10分
(ii)当
存在且
时,由(1)得
,
,
由
解得
,
,
所以
,
,
. ……12分
由于![]()
![]()
![]()
![]()
,当且仅当
时等号成立,即
时等号成立,此时
面积的最小值是
.……14分
当
,
.当
不存在时,
.综上所述,
的面积的最小值为
.……16分
解法二:
因为![]()
,
又
,
,
当且仅当
时等号成立,即
时等号成立,
此时
面积的最小值是
.
当
,
.
当
不存在时,![]()
科目:高中数学 来源: 题型:解答题
已知椭圆
方程为
,左、右焦点分别是
,若椭圆
上的点
到
的距离和等于
.
(Ⅰ)写出椭圆
的方程和焦点坐标;
(Ⅱ)设点
是椭圆
的动点,求线段
中点
的轨迹方程;
(Ⅲ)直线
过定点
,且与椭圆
交于不同的两点
,若
为锐角(
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于
.![]()
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线
交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
上横坐标为4的点到焦点的距离为5.![]()
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线
与抛物线C交于两点
,
,且
(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
.
(i)求实数a,b,k满足的等量关系;
(ii)
的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)过点
作直线
与抛物线
相交于两点
,圆![]()
![]()
![]()
(1)若抛物线在点
处的切线恰好与圆
相切,求直线
的方程;
(2)过点
分别作圆
的切线
,
试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,
),离心率为
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设直线
与直线
交于
点.
(1)当直线
过
点,且与直线
垂直时,求直线
的方程;
(2)当直线
过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com