精英家教网 > 高中数学 > 题目详情

如图,已知抛物线上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
(i)求实数a,b,k满足的等量关系;
(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

(Ⅰ)(Ⅱ)(i)(ii)为定值

解析试题分析:(Ⅰ)依题意:,解得.抛物线方程为.
(Ⅱ)(i)由方程组消去得:.(※)
依题意可知:.
由已知得.
,得,即,整理得.
所以 .
(ii)由(i)知中点,所以点
依题意知.
又因为方程(※)中判别式,得.
所以 ,
由(Ⅱ)可知,所以.
为常数,故的面积为定值.
考点:本小题主要考查抛物线标准方程的求解,直线与抛物线的位置关系的判断和应用,三角形面积公式的应用,考查学生的运算求解能力.
点评:判断直线与抛物线的位置关系时,不要忘记验证判别式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)设椭圆的左右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且的中点.

(1)求椭圆的离心率;
(2)若过点的圆恰好与直线相切,求椭圆的方程;
(3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(1)求椭圆的标准方程;
(2)设是过椭圆中心的任意弦,是线段的垂直平分线.上异于椭圆中心的点.
(i)若为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(ii)若与椭圆的交点,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点M引椭圆的两条切线,切点分别是A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.
(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

查看答案和解析>>

同步练习册答案