精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

(1);(2)

解析试题分析:(1)因为,所以.  
设椭圆方程为,又点在椭圆上,所以
解得,   
所以椭圆方程为.  
(2)易知直线的斜率存在,
的方程为,  由消去整理,得
,   
由题意知
解得
,则, ①,. ②.
因为的面积相等,
所以,所以. ③ 由①③消去. ④
代入②得. ⑤
将④代入⑤
整理化简得,解得,经检验成立. 
所以直线的方程为.
考点:椭圆的标准方程;椭圆的简单性质;直线与椭圆的综合应用。
点评:本题考查了椭圆方程的求法,以及直线与椭圆的综合应用,为圆锥曲线的常规题,应当掌握。考查了学生综合分析问题、解决问题的能力,知识的迁移能力以及运算能力。解题时要认真审题,仔细分析。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直线l1:4x:-3y+6=0和直线l2x=-p/2:.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I )求抛物线C的方程;
(II)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存 在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(a>b>0)的一个焦点是F(1,0),且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆CMN两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
(i)求实数a,b,k满足的等量关系;
(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 本小题满分12分)如图所示,已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线

求曲线的方程;
若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围。

查看答案和解析>>

同步练习册答案