精英家教网 > 高中数学 > 题目详情

(12分)已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

(1)(2)

解析试题分析:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周长为
所以,                                     1分
又椭圆的离心率为,即,所以,        2分
所以.                                        4分
所以,椭圆的方程为.                      5分
(Ⅱ)不妨设的方程,则的方程为.
,            6分
,因为,所以, 7分
同理可得,                                     8分
所以,          10分
,                       12分
,则,                 13分
当且仅当时取等号,所以面积的最大值为.
考点:椭圆方程及其性质,直线与椭圆相交问题
点评:直线与圆锥曲线相交,联立方程利用韦达定理是常用的思路

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知抛物线上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
(i)求实数a,b,k满足的等量关系;
(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若的最大值为49,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 本小题满分12分)如图所示,已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线

求曲线的方程;
若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知抛物线与直线交于两点.
(Ⅰ)求弦的长度;
(Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆及直线
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆C:的上顶点坐标为,离心率为.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)双曲线C与椭圆有相同的焦点,直线y=的一条渐近线.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点(0,4)的直线,交双曲线于A,B两点,交x轴于点(点与的顶点不重合)。当 =,且时,求点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设双曲线与直线交于两个不同的点,求双曲线的离心率的取值范围.

查看答案和解析>>

同步练习册答案