(本小题满分12分)
已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足,.
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且.
(Ⅰ);(Ⅱ)。
解析试题分析:(Ⅰ)设点M(x,y),由得P(0,),Q().
由得(3,)·(,)=0,即
又点Q在x轴的正半轴上,故点M的轨迹C的方程是.……6分
(Ⅱ)解法一:由题意可知N为抛物线C:y2=4x的焦点,且A、B为过焦点N的直线与抛物线C的两个交点。
当直线AB斜率不存在时,得A(1,2),B(1,-2),|AB|,不合题意;……7分
当直线AB斜率存在且不为0时,设,代入
得
则|AB|,解得 ………………10分
代入原方程得,由于,所以,
由,得 . …………………12分
解法二:由题设条件得
由(6)、(7)解得或,又,故
考点:直线与抛物线的综合应用;向量在几何中的应用;轨迹方程的求法。
点评:求曲线的轨迹方程是解析几何的基本问题之一。本题主要考查利用“相关点法”求曲线的轨迹方程。相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法.
科目:高中数学 来源: 题型:解答题
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点.
(1)求该椭圆的标准方程;
(2)设点,若是椭圆上的动点,求线段的中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线A C、BD过原点O,若,
(i) 求的最值.
(ii) 求证:四边形ABCD的面积为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为.
(1)求椭圆G的方程;
(2)求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的离心率,过点和的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com