精英家教网 > 高中数学 > 题目详情

已知,曲线上任意一点分别与点连线的斜率的乘积为
(Ⅰ)求曲线的方程;
(Ⅱ)设直线轴、轴分别交于两点,若曲线与直线没有公共点,求证:

(Ⅰ)
(Ⅱ)由,利用曲线与直线没有公共点,,得到,利用,及均值定理确定

从而证得. 

解析试题分析:(Ⅰ)设曲线上任意一点的坐标为.利用依题意点分别与点连线的斜率的乘积为,转化成代数式,整理可得
(Ⅱ)由,利用曲线与直线没有公共点,,得到,利用,及均值定理确定

从而证得. 
试题解析:(Ⅰ)设曲线上任意一点的坐标为
依题意,且,     3分
整理得.所以,曲线的方程为:.   5分
(Ⅱ)由
,        7分
由已知条件可知,所以

从而,   即.                 13分
考点:1、求轨迹方程,2、直线与椭圆的位置关系,3、均值定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.

(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,若动点满足
(1)求动点的轨迹曲线的方程;
(2)在曲线上求一点,使点到直线:的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为抛物线的焦点,抛物线上点满足

(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于两点,两点的横坐标均不为,连结并延长交抛物线于两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,经过点的动直线,与椭圆)相交于两点. 当轴时,,当轴时,
(Ⅰ)求椭圆的方程;
(Ⅱ)若的中点为,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的方程为,其离心率为,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足,求的取值范围.

查看答案和解析>>

同步练习册答案