如图,过抛物线的对称轴上任一点作直线与抛物线交于、两点,点Q是点P关于原点的对称点.
(1)设,证明:;
(2)设直线AB的方程是,过、两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
(1)详见解析.(2).
解析试题分析:(1)将直线与抛物线的方程联立,消去y,得到二次方程,应用设而不求,整体代换思想,证明,进而证明;(2)将直线与抛物线的方程联立,解出两点的坐标,求出抛物线在点处的切线斜率,则圆心与点连线的斜率为切线斜率的负倒数,得到方程①,再将两点的坐标代入到圆的方程中,得到方程②,解方程得到圆心坐标及半径,解出圆的方程.
试题解析: (1) 由题意,可设直线的方程为,代入抛物线方程得
①
设、两点的坐标分别是,则是方程①的两根,所以
由得,又点Q是点P关于原点的对称点,故点Q的坐标为,从而
所以
(2) 由得的坐标分别为
抛物线在点A处切线的斜率为3.
设圆C的方程是,则
解之得
故,圆C的方程是
考点:直线与圆锥曲线的位置关系,用数量积表示向量垂直.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆与轴相切,求圆被直线截得的线段长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为, (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,
(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com