已知椭圆
的中心在坐标原点,右准线为
,离心率为
.若直线
与椭圆
交于不同的两点
、
,以线段
为直径作圆
.
(1)求椭圆
的标准方程;
(2)若圆
与
轴相切,求圆
被直线
截得的线段长.
(1)
;(2)
.
解析试题分析:(1)先根据题中的条件确定
、
的值,然后利用
求出
的值,从而确定椭圆
的方程;(2)先确定点
的坐标,求出圆
的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.
试题解析:(1)设椭圆的方程为
,由题意知
,
,解得
,
则
,
,故椭圆
的标准方程为
5分
(2)由题意可知,点
为线段
的中点,且位于
轴正半轴,
又圆
与
轴相切,故点
的坐标为
,
不妨设点
位于第一象限,因为
,所以
, 7分
代入椭圆的方程,可得
,因为
,解得
, 10分
所以圆
的圆心为
,半径为
,其方程为
12分
因为圆心
到直线
的距离
14分
故圆
被直线
截得的线段长为
16分
考点:椭圆的方程、点到直线的距离、勾股定理
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
)在椭圆C上.![]()
(I)求椭圆C的方程;
(II)如图,动直线
:
与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且
,
,四边形
面积S的求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
方程为
,过右焦点斜率为1的直线到原点的距离为
.![]()
(1)求椭圆方程.
(2)已知
为椭圆的左右两个顶点,
为椭圆在第一象限内的一点,
为过点
且垂直
轴的直线,点
为直线
与直线
的交点,点
为以
为直径的圆与直线
的一个交点,求证:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,
、
分别是椭圆
的顶点,过坐标原点的直线交椭圆于
、
两点,其中
在第一象限.过
作
轴的垂线,垂足为
.连接
,并延长交椭圆于点
.设直线
的斜率为
.![]()
(Ⅰ)当直线
平分线段
时,求
的值;
(Ⅱ)当
时,求点
到直线
的距离;
(Ⅲ)对任意
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,过抛物线
的对称轴上任一点
作直线与抛物线交于
、
两点,点Q是点P关于原点的对称点.![]()
(1)设
,证明:
;
(2)设直线AB的方程是
,过
、
两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
=
+
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为抛物线
的焦点,抛物线上点
满足![]()
![]()
(Ⅰ)求抛物线
的方程;
(Ⅱ)
点的坐标为(
,
),过点F作斜率为
的直线与抛物线交于
、
两点,
、
两点的横坐标均不为
,连结
、
并延长交抛物线于
、
两点,设直线
的斜率为
,问
是否为定值,若是求出该定值,若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点
且与直线
相切的动圆的圆心轨迹为
.点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且△
的面积为20,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com