已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆与轴相切,求圆被直线截得的线段长.
(1);(2).
解析试题分析:(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.
试题解析:(1)设椭圆的方程为,由题意知,,解得,
则,,故椭圆的标准方程为 5分
(2)由题意可知,点为线段的中点,且位于轴正半轴,
又圆与轴相切,故点的坐标为,
不妨设点位于第一象限,因为,所以, 7分
代入椭圆的方程,可得,因为,解得, 10分
所以圆的圆心为,半径为,其方程为 12分
因为圆心到直线的距离 14分
故圆被直线截得的线段长为 16分
考点:椭圆的方程、点到直线的距离、勾股定理
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线:与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,,四边形面积S的求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.
(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为.
(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,过抛物线的对称轴上任一点作直线与抛物线交于、两点,点Q是点P关于原点的对称点.
(1)设,证明:;
(2)设直线AB的方程是,过、两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知为抛物线的焦点,抛物线上点满足
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com