曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且⊥,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.
(1)y=2x2;
(2)M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。所求的定点为,定直线方程为y=.
解析试题分析:
思路分析:(1)曲线C上任一点到定点(0,)的距离等于它到定直线的距离.所以,由抛物线的定义,其方程为,而,所以,y=2x2;
(2)利用“参数法” 得到y=4x2+4x+,根据图象的平移变换得到结论:定点为,定直线方程为y=.
解:(1)因为,利用抛物线的定义,确定得到y=2x2;
(2)设:y-2=k(x-1)(k≠0) :y=2=
由得2x2-kx+k-2=0
同理得B点坐标为
∴
消去k得:y=4x2+4x+ ………9分
M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。将抛物线方程化为,此抛物线可看成是由抛物线左移个单位,上移个单位得到的,而抛物线的焦点为(0,),准线为y=-.∴所求的定点为,定直线方程为y=.
考点:抛物线方程,直线与抛物线的位置关系。
点评:难题,利用“直接法”可确定得到抛物线方程。利用“参数法”求得抛物线方程,通过研究焦点、准线等,达到确定“存在性”的目的。
科目:高中数学 来源: 题型:解答题
如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标;
(2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的长轴长为,离心率.
Ⅰ)求椭圆C的标准方程;
Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com