在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为
,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线
,
∥l且
与曲线C的交点A、B满足
;
若存在请求出满足题意的所有直线方程,若不存在请说明理由。
(Ⅰ)P(0,4),点P在直线
上(Ⅱ)最小值为
,最大值为
(Ⅲ)
或![]()
解析试题分析:(I)把极坐标系下的点
化为直角坐标,得P(0,4)2分
因为点P的直角坐标(0,4)满足直线
的方程
,所以点P在直线
上.4分
(II)因为点Q在曲线C上,故可设点Q的坐标为
,5分
从而点Q到直线
的距离为
, 6分
由此得,当
时,d取得最小值,且最小值为![]()
当
时,d取得最大值,且最大值为
8分
(Ⅲ)设
平行线m方程:
9分![]()
![]()
设O到直线m的距离为d,则
10分
经验证均满足题意 ,所求方程为
或
12分
考点:极坐标化直角坐标及平面内直线与椭圆相交相离的位置关系
点评:极坐标
与直角坐标
的互化
,第二问求距离的最值首先找到距离的表达式,借助于三角函数参数的有界性求得最值,第三问是直线与椭圆相交问题,此题求三角形面积用到了弦长,因此联立方程求出弦长得到面积
科目:高中数学 来源: 题型:解答题
如图,椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于S、T两点,与抛物线交于C、D两点,且
.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆
的极坐标方程为
,以极点为直角坐标系的原点,极轴为
轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆
上的一点
作平行于
轴的直线
,设
与
轴交于点
,向量
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)设点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,直线l为圆
的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为
,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列.直线
与
轴正半轴和
轴分别交于点
、
,与椭圆分别交于点
、
,各点均不重合且满足![]()
(1)求椭圆的标准方程;
(2)若
,试证明:直线
过定点并求此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)求椭圆
及动圆圆心轨迹
的方程;
(2) 在曲线
上有两点
、
,椭圆
上有两点
、
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆的
左,右焦点。
(Ⅰ)若
是第一象限内该椭圆上的一点,且
,求点
的坐标。
(Ⅱ)设过定点
的直线与椭圆交于不同的两点
,且
为锐角(其中O为坐标原点),求直线
的斜率
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆
的左、右焦点分别为F1,F2,椭圆的离心率为
:2.(1)过点C(-1,0)且以向量
为方向向量的直线
交椭圆于不同两点A、B,若
,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,
,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com