精英家教网 > 高中数学 > 题目详情

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

(Ⅰ)P(0,4),点P在直线上(Ⅱ)最小值为,最大值为(Ⅲ)

解析试题分析:(I)把极坐标系下的点化为直角坐标,得P(0,4)2分
因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上.4分
(II)因为点Q在曲线C上,故可设点Q的坐标为,5分
从而点Q到直线的距离为
,    6分
由此得,当时,d取得最小值,且最小值为
时,d取得最大值,且最大值为        8分
(Ⅲ)设平行线m方程:               9分

设O到直线m的距离为d,则   10分
 
经验证均满足题意 ,所求方程为      12分
考点:极坐标化直角坐标及平面内直线与椭圆相交相离的位置关系
点评:极坐标与直角坐标的互化,第二问求距离的最值首先找到距离的表达式,借助于三角函数参数的有界性求得最值,第三问是直线与椭圆相交问题,此题求三角形面积用到了弦长,因此联立方程求出弦长得到面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,且经过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.直线轴正半轴和轴分别交于点,与椭圆分别交于点,各点均不重合且满足
(1)求椭圆的标准方程;
(2)若,试证明:直线过定点并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)求椭圆及动圆圆心轨迹的方程;
(2) 在曲线上有两点,椭圆上有两点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为:2.(1)过点C(-1,0)且以向量为方向向量的直线交椭圆于不同两点A、B,若,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.

查看答案和解析>>

同步练习册答案