精英家教网 > 高中数学 > 题目详情

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)求椭圆及动圆圆心轨迹的方程;
(2) 在曲线上有两点,椭圆上有两点,满足共线,共线,且,求四边形面积的最小值.

(1)
(2)四边形PMQN面积的最小值为8

解析试题分析:解:(1)(ⅰ)由已知可得
则所求椭圆方程.           3分
(ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为,准线方程为,则动圆圆心轨迹方程为.               5分
(2)当直线MN的斜率不存在时,,此时PQ的长即为椭圆长轴长,
从而            6分
设直线MN的斜率为k,则k≠0,直线MN的方程为:
直线PQ的方程为

,消去可得---8分
由抛物线定义可知:
9分
消去
从而                 10分

,∵

=,所以=>8           11分
所以四边形PMQN面积的最小值为8                                  12分
考点:椭圆方程,轨迹方程
点评:主要是考查了轨迹方程的求解,以及联立方程组结合韦达定理来求解面积,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点,动点满足.
(1)求动点P的轨迹方程; 
(2)设(1)中所求轨迹与直线交于点两点 ,求证(为原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为为参数).
(1)求曲线的直角坐标方程以及曲线的普通方程;
(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于的任意一点,点轴上的射影为的中点,直线交直线于点的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的上顶点为,左焦点为,直线与圆相切.过点的直线与椭圆交于两点.
(I)求椭圆的方程;
(II)当的面积达到最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点,过原点和轴不重合的直线与椭圆 相交于两点,且最小值为
(Ⅰ)求椭圆的方程;
(Ⅱ)若圆:的切线与椭圆相交于两点,当两点横坐标不相等时,问:是否垂直?若垂直,请给出证明;若不垂直,请说明理由.

查看答案和解析>>

同步练习册答案