精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,椭圆的右焦点为,离心率为
分别过的两条弦相交于点(异于两点),且
(1)求椭圆的方程;
(2)求证:直线的斜率之和为定值.

(1);(2)详见解析.

解析试题分析:(1)根据条件“右焦点为,离心率为”得到含有的两个方程,进而求解椭圆方程;(2)通过直线和直线与椭圆连接方程组,得到四点坐标,统一变量,减少字母,然后利用斜率公式证明直线的斜率之和为定值.在第(2)问的运算上要注意先化简再代入.本题的几何背景是:在如图所示的圆中,因为,且,所以

试题解析:(1)解:由题意,得,故
从而
所以椭圆的方程为.      ①                             5分
(2)证明:设直线的方程为,   ②
直线的方程为,   ③                                  7分
由①②得,点的横坐标为
由①③得,点的横坐标为,                    9分

则直线的斜率之和为


                               13分

.                                                          16分
考点:1.椭圆的标准方程;2.直线的斜率;3.直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的参数方程为是参数是曲线轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线交于点,直线交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆 ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:











(1)求的标准方程;
(2)设斜率不为0的动直线有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与曲线的交点为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦距为4,且过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设为椭圆上一点,过点轴的垂线,垂足为。取点,连接,过点的垂线交轴于点。点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

同步练习册答案